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Abstract  

The exploitative and destructive challenges posed my ransomwares has continues to persist within the  

cyberspace industry. The increasing frequency and complexity of ransomware attacks threaten data 

security, resulting in substantial financial losses and operational disruptions across sectors. Recently, 

Federated Learning (FL) technology has been identified as a prospect for improvement in ransomware 

detection and mitigation. This trend is because it provides a decentralized method using machine learning 

(ML)/deep learning (DL) techniques to enable the collaborative training of multiple devices without 

providing access to their private information. This Systematic Literature Review (SLR) synthesizes the 

current applications of FL in ransomware detection, providing a critical evaluation of the successes and 

limitations of these approaches. Additionally, the review explores the evolving ransomware threat 

landscape and offers suggestions for future research directions to strengthen ransomware defenses. Our 

review began by identifying 185 relevant publications from 2019 to 2024. After thoroughly examining their 

abstracts, methodologies, and full texts, 53 key papers were selected for in-depth analysis. These articles 

were sourced from reputable databases, including Scopus, Web of Science, Springer Nature, and IEEE, 

among others, with the findings reported following the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines. Our study addresses four critical research questions:(RQ1, RQ2, 

RQ3, and RQ4). Through these questions, this SLR presents a complete overview of the recent happenings 

in ransomware detection using FL, demonstrating valuable insights and emerging trends that can guide 

researchers and practitioners in crafting more effective strategies to combat ransomware attacks. 

Keywords: Collaborative, Federated Learning, Machine Learning, Ransomware Attacks, Ransomware 

Detection, Trend Landscape 
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1. Introduction 
We currently leave in world of destructive cyber-attack and exploitation, one of the most exploitative and 

dangerous malware type is called ransomware. This program poses an enormous threat to organizations of 

all sizes, primarily by encrypting relevant data and making it out of reach to the owners until a ransom is 

paid for the decryption key. Since the discovery of the first ransomware, Trojan Horse AIDS, in 1989, as 

noted in [1] numerous high-profile ransomware incidents have led to substantial financial extortion, 

amounting to billions of dollars. [2] reported that in 2021, the US-based meat production company JBS 

paid $11 million in ransom following an attack that disrupted its operations. Beyond the direct costs of 

ransom payments and operational downtime, victims of ransomware attacks may also suffer additional 

damages, such as data loss and reputational harm. [3] Points out that these attackers often get access to 

devices through phishing emails, malicious attachments, or exploiting the network and software 

vulnerabilities of the target platform. Phishing is a cybercrime in which criminals send spam emails with 

harmful links. The objective is to deceive recipients into accessing deceptive websites or downloading 

harmful software; initially, these messages were limited to emails; however, the recent strategy has 

expanded to texts, social media engagements, and phone calls. 

 [4] maintains that cybercrimes were not so profitable and attractive, but that has changed 

dramatically in recent history, primarily through the advancement of ransomware as a service (RaaS) 

software. Attackers no longer necessarily need technical knowledge or expertise before they carry out 

criminal activities since they can purchase an already developed and packaged ransomware service plan 

aided by an increasing community on the Darkweb. In 2021, Sophos [5]reported a significant rise of 75% 

in the occurrence of ransomware attacks. This increase affected 77% of organizations, a notable rise from 

the 44% recorded in 2020. The number of assaults decreased by 23% in 2022, suggesting that improvement 

in detection and mitigating technologies, heightened regulatory scrutiny, and public awareness about the 

modes of propagation effects have a significant impact; however, due to the constant advancement of 

ransomware, this didn’t persist for a long time as 2023 to early 2024 produced 4,893 victims up from 2,708 

the previous year as observed in [1]. Ransomware attacks involve six stages; we have annotated this in 

Figure 1. At first, the attackers implore different social engineering tactics to deceive victims into installing 

malicious wares; once the compromised software is installed, the rest of the process will follow, including 

the virus searching for relevant files to encrypt, establishing a connection with the hacker's backend servers 

where such files will be sent before it encrypts, delete or Lock folder and then finally display a message to 

inform the user of their demand. 

 



 

Fig 1 Stages of a ransomware attack showing the step-by-step procedures that a typical cyber actor 

can implore to propagate ransomware before demanding payment 

 Meanwhile, the observed trend in Figure 2, as analyzed by  [5], shows the percentage of 

ransomware attacks in recent years (2020 - 2024), indicating continuous growth of these cyber-attacks 

yearly. It also shows the need to continue developing more aggressive anti-ransomware systems, primarily 

through a precise and collaborative methodology that will reduce threats and exploitation by hackers. 

 



 

Fig 2 Percentage of ransomware attacks [5] from the year 2020 to 2024, with the attack remaining 

at the same level throughout 2022 to 2023 

 Existing literature reviews [6][7][8] offer valuable contributions through analysis of various 

ransomware detection and mitigation approaches; however, none have comprehensively addressed the 

aspect of the application of Federated Learning (FL) to ransomware detection, common challenges facing 

FL application in ransomware detection domain and current Ransomware trend landscape. This study has 

made the following key contributions: 

• Conducting a detailed analysis of the ransomware trend landscape. 

• Summarizing and tabulating various detection approaches, highlighting research gaps  

• Analyzing recent applications of FL for Ransomware detection and Mitigation. 

• Providing common challenges limiting FL application to the Ransomware detection domain and 

suggestions for future directions. 

 The rest of this study is organized as follows: Section 2 is about the Related Survey, and Section 3 

analyzes the trend landscape. Section 4 discusses various ransomware detection techniques and the 

associated deployment challenges. Section 5 dives into the federated learning application for ransomware 

detection, Section 6 outlines the review methodology, and Section 7 presents the limitations and conclusion. 

Figure 3 represents a comprehensive and high-level overview of the structure of this study, detailing the 

sections and demography, subject area, research questions, and methodology. 
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Fig 3 High-level overview of this SLR, highlighting the areas of interest, procedures, research 

questions, and the structure of the study 

2. Related Surveys 
The study conducted by authors in [9]made a notable contribution to raising awareness among the general 

public, especially those with limited technical knowledge, regarding the threats posed by cybercriminals 

using ransomware for illicit activities. They outlined several critical risks, including system shutdowns 

caused by ransomware infections, loss or theft of data, financial implications, and severe but rare cases, 

even loss of life, particularly in sectors like healthcare, where data integrity is crucial. The authors proposed 

several key mitigation strategies, such as implementing robust email security protocols, utilizing intrusion 

prevention systems, employing download insights to identify and block malicious content, ensuring 

browser and exploit protection, and adopting best practices in cybersecurity to fortify defenses against such 

attacks. The research study [10]outlined the issues facing malware detection using data mining methods; 

the study conducted a comparative analysis of these methods based on the classification types, dataset size, 

and analytical methodology.  

 Research by  [11] surveyed the ransomware problem concerning the Internet of Things (IoT) 

domain application. The authors examined the varying sophistication of ransomware attacks, emphasizing 

the susceptibility of the IoT and the consequent need to act decisively. Another related work [12] examined 

the methods used for Android security. Specifically, they addressed the approaches attackers employ to 

exploit vulnerabilities in malware detection systems. The authors presented a thorough analysis of the 

merits and limitations of well-established research approaches within the domain of Android security. The 

survey also furnishes scholars and practitioners with a basis for suggesting novel methodologies to examine 

and counteract these attacks. A taxonomy of ransomware research efforts only utilizing clever Machine 



Learning (ML) methods was surveyed by research work in [13]. Their study involved thorough 

investigations of papers published from 2016 to 2020, subsequently highlighting several potential future 

paths and obstacles in the implementation of Deep Learning (DL) methods for ransomware protection. 

 In addition to revealing the business side of ransomware and its actors, research work [14] 

conducted a comprehensive study looking at the economic consequences of ransomware, specifically from 

the standpoint of Bitcoin transactions. The study also presented an overview of each investigated 

ransomware origin, evolution, and method of ransomware attack operation. Authors in [15] focused on 

memory forensics, explicitly targeting the widespread impact of the Wannarcy ransomware on the global 

computer network. Authors in[16] and [12] analyzed the application of ML to malware classification using 

the Windows operating system as a benchmark, particularly for Portable Executables. They selected papers 

according to their objectives and the application of ML methods, then rounded off by identifying issues, 

particularly those about datasets and prospects for progress. The study work [17] employed a unique 

approach to examining research papers on ransomware, mainly focusing on the variety of platforms that 

are most targeted; they also addressed relevant literature about mobile devices as well as the IoT. 

 On the FL concept,[18] [19]explored the various models of data partitioning in FL, with a focus on 

the neural network topologies used in federated models. In the same vain, the study in [11] provided a 

thorough examination of existing research on FL from five dimensions: basic FL understanding, privacy 

and security considerations in FL, overhead associated with communication concerns, FL heterogeneity 

challenges, and several FL implementations in different domains while the study in  [20] focused on diverse 

areas of FL application comprising health related attributions, a network of vehicles, smart cities, 

recommender systems. The study also highlighted developmental parameters, such as application 

programmers' interface, system designs, and communication efficiency. 

The study in [21] investigated the progress of FL in the field of healthcare informatics. With a 

comprehensive overview, they analyzed the statistical obstacles and their corresponding resolutions, system 

obstacles, and privacy concerns in this context. Their target was to offer valuable resources for 

computational research on ML methods for handling extensively dispersed data while considering its 

privacy and health informatics. A similar work in [22] reported how FL can be used in different fields and 

businesses in multiple ways, such as enhancing distributed data collection and improving neural network 

architectures for better collaboration in an FL environment. They also examined the problems that FL 

causes, such as differences in statistics and systems, uneven data distribution, problems with allocating 

resources, and privacy issues. A recent approach by [23] evaluated the existing challenges in implementing 

federated learning in energy computing, including their corresponding remedies. Additionally, the authors 

presented portable edge improvements and identified the key obstacles and issues that need addressing in 

future FL studies. 

The comparison of studies in Table 1 reveals that many existing works within ransomware 

detection and FL are often involved in superficial or one-sided surveys in their interest instead of presenting 

a round view. They are conducting more thorough investigations focused solely on ransomware. FL will 

enhance our understanding of the roadmap to integrating FL into ransomware detection and mitigation and 

guide us through the complexities involved, identifying best practices and addressing existing gaps in 

methodologies. 

 

 



 

Table 1 Summary of related surveys 

Work Background Evolution Discussed 

Challenges 

Future 

Perspectives 

Taxonomy 

Ransomware  FL 

       

[9]       

[10]       

[4       

[14]       

[15]       

[17]       

[11]       

[20]       

 [23]       

Our       

 

: Denotes what the survey did not cover. 

: Denotes that the survey has addressed the criterion. 

3. Ransomware Detection and Mitigation Approaches 
As ransomware attacks continue to increase, researchers and security specialists have developed numerous 

detection techniques. Several studies [24][25][26] have dedicated their prowess to devising innovative 

mitigation strategies to combat the ransomware menace, encompassing the complete process to ensure 

secured information across three key areas, namely detection, prediction, and mitigation. These techniques 

predominantly leverage ML/DL technologies and employ static, dynamic, or hybrid analysis approaches. 

As illustrated in Figure 4, static methods focus on signature attributes, dynamic methods on behavioral 

attributes, and hybrid methods combine both techniques. The primary aim of these processes is to extract 

pertinent information for the detection phase. These parameters are usually collated and analyzed to make 

informed predictions based on specific metrics, ultimately guiding actions to mitigate these attacks. 



 

Fig 4 Annotation of Ransomware detection techniques and the enabling technologies involved in 

various approaches 

3.1 Static Analysis 
The static analysis method employs the tacting of searching for a known signature for detection by 

comparing the digital footprint of a given sample to that stored in the database of known malicious 

signatures. This approach involves scrutinizing the code and structure of suspicious software without 

executing it. It relies on detailed information about ransomware activities, typically stored in the META-

INF directory, which stores metadata about the application and ensures its integrity and authenticity. For 

example, [27] clarifies that the Android operating system's permission management mechanism uses 

information within the APK file to identify and detect malicious applications. In their review of Windows 

malware detection, [28] also emphasize that the signatures-based detection paradigm gives researchers 

critical insights into the content and structure of samples, enabling the early identification of potentially 

harmful instructions. This mechanism is essential for minimizing impact and reducing the likelihood of 

successful attacks. Notable studies, such as  [29] and [30], have effectively integrated this approach. This 

methodology's parameters for the detection process include hashes, API calls, executables, entropy change, 

and opcode frequencies. The prominent application of the static approach was proposed by [31], who 

utilized assembly language to perform reverse engineering on PE information and then applied dynamic 

linkable libraries (DLLs) and function call extraction to the header file for feature extraction. Using 

CNN,[32] extracted headers to create a grayscale image with a zigzag pattern and trained the model using 

the images to predict patterns. At the same time, [33] focused on using entropy parameters to analyze and 

capture the decisive characteristics of a typical Ransomware; however, [34] argues that static-related 

approaches are relatively limited because they are unable to capture the information necessary for precise 



ransomware detection; therefore, the authors combined feature approach in their study to acquire a wide 

range of features which enabled them to classify ransomware behavior and characteristics accurately. 

3.2 Dynamic Analysis 

Dynamic analysis is considered more accurate and comprehensive than static analysis because it involves 

deep behavior analysis, assessing software behavior in real-time by executing and observing it during 

runtime. Authors in the study [35] point out that this behavioral-based analysis takes place in the Region of 

Interest (ROI), which constitutes a segment of the computing environment where file encryption occurs; 

this is to improve the security of the process. The extraction algorithm is applied to dynamically sample the 

trace files into smaller segments known as sliding windows. These sliding windows enable continuous 

monitoring of file behavior and interactions with the environment. By assessing the frequency of these 

interactions against predefined thresholds, the system identifies potential malware instances, delivering the 

capacity to combat obfuscation, polymorphism, encryption, and anti-disassembler; it can compensate for 

the static analysis limitations. To demonstrate the capacity of a behavior-based approach to zero-day 

detection, [36] focused on crypto-ransomware early detection models that safeguard users from being 

victimized in any attack. 

3.3 Hybrid Analysis 

Combines static and dynamic analysis for a more comprehensive outcome; it uses static analysis to identify 

malicious patterns, then uses dynamic analysis to confirm suspicions or uncover hidden malicious activities. 

You may see hybrid as combining the strength of static with the strength of dynamic to develop a robust 

and complete detection system. An automated ransomware detection method for email filtering, named R-

Killer, was introduced by [37]; this approach utilizes a DL technique to implement a robust model, which 

tracks processes generated through email attachments to analyze the potential ransomware threat. The 

study, called the “R-Killer”  system, gathered threat intelligence while preserving user data privacy and 

used the meta-analysis for email protection against cyber-attacks. The study [38] proposed the combination 

of signatures before dynamic analysis for malware detection in cloud environments. This research work 

was designed to enhance the volume of data generated within network environments, enabling the rapid 

classification of potential malware files.  

 



Fig 5 Distribution of detection and mitigation approaches in the literature study 

Table 2 Comparative analysis of various ransomware detection techniques 

Work Mode of Analysis Technique Result Research Gap 

 

[39] (PE) header files via 

the Xception (CNN) 

model through 

Static Analysis  

DL  Was able to achieve  90% 

accuracy and recall of 

100% 

Only the PE header was 

used to extract features 

for ransomware analysis. 

Other detection indicators 

should be utilized. 

 

[26] Applied Dynamic 

analysis using  

Ai-based 

Sandboxing  

ML On-premise cross-

validation using different 

ML classifiers. Recorded 

an F-measure of 93.7 

It can be improved to 

detect Zero-day 

vulnerabilities + on a 

larger dataset. 

[31] Dynamic analysis 

using a pre-

encryption 

algorithm 

ML  RF and NB classifiers 

achieved an impressive  

0.0156 FPR 

 

Only used for crypto-

ransomware, it may be 

prone to code 

obfuscation. 

[40] Static analysis using 

API calls 

ML Achieved a FNR of 1.3% 

with 99% accuracy  

 

Prone to signature-based 

evasion techniques. 

 

[41] Dynamic analysis 

using Cuckoo 

sandbox 

ML Using memory dump 

analysis, they recorded an 

improved accuracy of 

97.85% while 

maintaining a low % false 

positive rate of 2%. 

 

Memory dumps analysis 

is not suitable for real-

time detection. 

[42] Hybrid Analysis 

In sandbox 

ML Used the binary versus 

fixed parameters 

paradigm through  

sandboxing  

to detect a variant known 

as the W-32 dropper. 

 

The Cerber ransomware 

group has many types but 

can only detect the W-32 

dropper. 

 

 

[43] Static Analysis FL Using FL with API calls to 

train an ML model 

resulted in a 93.1% 

It is only Windows-

based. Future directions 

can enable cross-



accuracy rate in 

identifying ransomware. 

 

platform compatibility 

and diverse datasets.  

 

[44] Hybrid Analysis  

Using context-aware 

entropy 

Feature extraction  

 

DL accurately classified 

ransomware via context-

aware analysis-based, 

high-precision recorded 

the approach can be 

improved by using the  

kernel I/O analysis to 

Implement file filtering 

features in place of 

context-aware  

 

[45] Dynamic Analysis DL Used AI sandboxing 

environment to interact 

with binaries and analyze 

their behavior, obtaining 

zero false positives 

 

The artificial 

sandboxing 

environment may not 

detect DLL hijacking. 

 

[46] Dynamic Analysis ML Applied Network Security 

principles for their 

analysis, recording a 

precision of 92.32% and 

recall of 99.97%, then an 

accuracy of 99.99% in 

detecting ransomware 

 

The traffic patterns 

recorded may conceal 

exploits using 

stenographic methods. 

 

[47] Dynamic Analysis ML They Used network traffic 

analysis with a decision 

tree (J48) classifier and 

achieved a TPR of 97.1%. 

 

Unable to identify 

different types of 

ransomware because it 

wasn't trained on 

enough data (limited 

dataset) 

 

 

 Table 2 summarizes various detection techniques, highlighting the modes of analysis, applied 

techniques, results obtained, and potential research gaps. At the same time, Figure 5 details the current trend 

in applying these approaches to malware analysis, detection, and prevention. Our findings review that about 

53% of studies recently adopted the dynamic analysis approach to detect, while a little above half of that 

percentage, at 29%, still believes in the prowess of the signature-based static analysis method. Meanwhile, 

18% of recent publications have combined dynamic and static approaches for more effective, robust, and 

complete results. The above summary shows that ransomware detection methods have significantly 

improved their effectiveness against significant attacks. State-of-the-art techniques now apply hybrid 

methodologies, often incorporating artificial intelligence (AI)-based strategies to enhance their efficacy. 

However, [48] maintains that despite these advancements, the new malware variant continues to evade 

detection because most existing techniques may be unable to address evolving ransomware strains 



simultaneously. Most solutions are tailored to detect specific strains or types of ransomware, resulting in a 

lack of generic solutions due to the inherent challenges in developing such comprehensive systems. 

Therefore, future research should focus on developing robust and secure detection systems through the 

collaboration of cyber threat intelligence sharing and federated learning (FL) 

4 Ransomware Trend Landscape  

The threat of ransomware has consistently been ranked top by the European Union Agency for 

Cybersecurity (ENISA), as reported in [50]. Meanwhile, the Cybercrime magazine [49] predicts a 

disturbing increase in the global cybercrime index. They estimate a 15 annual growth over the next five 

years, reaching a staggering $10.5 trillion by 2025. The team also believes this dimension would be the 

most significant transfer of wealth ever seen, and it could discourage both innovation and investment 

because the projected damage is worse than the yearly cost of natural disasters and even more profitable 

than all the world's illegal drug trade combined. To understand the latest scope and tactics implored by 

cyber criminals, we have classified the current trend landscape into four main categories. 

4.1.1 Ransom – Economy 

The ransom economy era showcases how ransomware groups have progressed beyond mere execution of 

attacks to offering packaged software products and tools for fellow cybercriminals. Although this trajectory 

isn't entirely novel, the degree to which criminal entities have adopted it tells us the need to be concerned. 

This trend has intensified with ransomware as a service (RaaS), a model that streamlines the distribution 

and execution of ransomware attacks. It presents cybercriminals, including those lacking technical 

expertise, an opportunity to access sophisticated ransomware tools and infrastructure through subscription-

based services or partnerships with experienced hackers. Figure 6 shows some commercially exploited 

ransomware and how they affected the globe, including how long they stayed, the victims, and the average 

number of victims recorded per 30 days before being discovered and resolved. RaaS providers offer a range 

of services, from customizable ransomware variants to user-friendly dashboards for managing attacks, 

significantly lowering the barrier to entry for aspiring cybercriminals, where anyone with financial 

motivation can engage in extortion activities with relative ease. 

 

Fig 6 Notable commercially exploited ransomware with respective effects globally 
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 Ransomware groups have adopted a more organized approach, employing sophisticated and 

structured strategies that mirror the cooperation and practices found in the conventional business world; for 

example, according to a Microsoft Threat Intelligence Report[50], one affiliate gang first used ransomware 

from Ryuk, Conti, and Hive before moving on to use malware from BlackCat. Another affiliate worked 

with Ryuk, REvil, and Conti and later worked with BlackCat. Authors in  [51][52] out that this trend shows 

how hackers made more than $18 million from April 2014 to June 2015 when the CryptoWall ransomware 

was released, not also forgetting the noble Wannarcy2017, which exploited the vulnerability in the 

healthcare system by affecting hundreds of hospitals across the United Kingdom, creating mass distribution 

that led to over 19,000 appointments being canceled. 

4.1.2 Data Monetization 
Generally, the motive behind stealing or encrypting data is to extort the victim, but in current trends, stolen 

data is not just valuable to its rightful owners. Upon compromising a system and gaining access to a 

company's secrets and sensitive documents, hackers may monetize such information by selling it to the 

highest bidder. According to [53], this technique shows a shift in the trend and dynamics of cybercrime, 

wherein stolen data becomes a commodity with substantial market value, highlighting the multifaceted risks 

posed by such breaches to the targeted entities.  

The study [54] stresses that this approach is often classified as “Double Dipping,” a trend 

illustrating the combination of ransomware attack techniques with other social engineering tactics to 

suppress the victim into falling prey. Usually, this scenario occurs when cybercriminals gain unauthorized 

access to an organization's data, subsequently encrypting it. In cases where the targeted firm hesitates to 

comply with ransom demands, often due to having backup systems in place for file restoration, the attackers 

resort to coercive measures. They may threaten to publicly disclose the pilfered data on the dark web or sell 

it to a third party; such actions can expose personally identifiable information (PII) and the organization's 

proprietary intellectual property, causing significant damage to its reputation, so the company may have no 

option than to pay even if they have a backup option available. A notable instance of this tactic was 

witnessed in 2019 at Allied Universal security staffing company, where the attackers demanded a ransom 

of $2.3 million. When the firm refused to pay, the cybercriminals threatened to use sensitive information 

extracted from the company’s system for spam impersonation. 

4.1.3 Automated Approach 
These days, even cybercriminals utilize automation’s ability to save time and resources. Like professional 

companies, cyber criminal gangs are trying to improve their efficiency by automating operations and 

minimizing human error. System penetration, the most time- and resource-consuming part of a ransomware 

attack, can now be streamlined through automated processes. This capability empowers groups with limited 

workforce or resources to execute attacks more efficiently and effectively. The study [38]emphasized that 

hackers increasingly leverage blockchain technology for attack methodologies. Also worthy of note is that 

the advancement and popularity of IoT devices have boosted this automation approach. [6]contends that 

the Internet of Things (IoT) device population is increasing continuously and is estimated to reach around 

64 billion by 2025.  

The past few years have seen an upsurge in cybercrime groups targeting these devices, especially 

in the industrial and agricultural sectors. [55] notes that these attacks range from relatively straightforward 

tactics, such as utilizing IoT devices as entry points to propagate ransomware across interconnected devices 

within networks, to more intricate strategies. Figure 7 shows the Top ten(10) ransomware attack targets in 



2023 by country, with the United States being the most targeted, followed by the UK and Canada among 

the top 3. Meanwhile, Spain, Brazil, and India attracted minimal attention from the Darkweb. 

 

Fig 7 Top 10 ransomware attack targets in 2023 by country. 

4.1.4 Exploiting Cloud 
Ransomware in the cloud operates within a distinct paradigm. Unlike traditional ransomware attacks that 

rely on tricking users into running some malicious software to encrypt stored data, cloud-based ransomware 

often involves threat actors' exfiltration of data that has not been adequately secured, deleting the original 

files, and subsequently demanding a ransom for their restoration. If organizations do not have adequate 

backups, paying the ransom may be the only solution to regain access to the compromised data.  

The growing reliance on cloud services has provided fraudulent individuals ample opportunities to engage 

in this malicious activity. As businesses increasingly store sensitive data in the cloud, attackers can target 

a larger pool of valuable traits. This trend, coupled with the ease of deploying attacks and the potential for 

substantial financial gain, has made cloud ransomware the next big deal in the industry.  

More so, the anonymity facilitated by cryptocurrencies has also simplified the process of demanding and 

receiving ransoms, to some extent offering attackers a means to operate without fear of being traced. 

Google's Cloud Team [56] identifies that 86% of hacked cloud instances are used for cryptocurrency 

mining. Individuals already engaged in "crypto-jacking" might easily switch to using ransomware on 

infected systems or making money by selling access to more established groups.[57] maintains that the 

present cloud systems are often accidentally left exposed to the internet and are less secure than systems in 

a traditional IT system. 

4.2 Challenges Facing Deployment of Detection Approaches to Industry 

Previous sections have highlighted the integral role of several features in understanding the complex 

landscape of malware detection, epitomizing the synergy of modern analytical methodologies. However, a 

significant problem facing malware detection methods is the difficulty in industry deployment. The study 

[28] emphasizes that numerous impressive ransomware approaches have undergone proper validation. 

However, many of these have not been deployed to industry because of limited real-world validation. This 
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lack of deployment is a critical challenge, as deploying these techniques is crucial to ensuring their 

robustness. The reasons for this inadequacy can be categorized into three aspects. 

4.2.2 Diverse and Evolving Threats 

The nature and complexity of ransomware are constantly changing with real-world scenarios; 

cybercriminals are continuously developing new techniques to make their attacks more sophisticated and 

efficient and also to evade detection approaches; as a result, a detection technique that performs well in a 

research environment may face difficulties in keeping up with the rapidly evolving malware landscape. 

Therefore, if existing malware detection approaches are not thoroughly validated in real-world applications, 

then it can not be certain that such techniques will detect sophisticated malware and fail industry validation. 

4.2.3 Cost of Deployment 

Deploying new technology in an organizational environment generally involves significant resource 

constraints, including computing power, storage, and physical space. Additionally, the organization may 

need to modify its architecture or framework, including changing or upgrading its network firewalls, 

introducing a new Intrusion detection or prevention apparatus, or deploying an overall Security information 

and event management(SIEM) to accommodate the intended new deployment.  [29] affirms that deploying 

the malware model as a new technology in an organization will always be time-consuming and resource-

intensive, necessitating substantial computing power and storage. This challenge justifies why many 

researchers are unable to deploy their proposed methods. 

4.2.4 scalability 

Integrating malware detection methods into real-world scenarios presents a significant scalability challenge. 

Many detection approaches rely on small datasets generated in simulated environments, which may not 

accurately reflect the characteristics of malware in actual settings. This challenge is critical because 

scalability involves processing larger volumes of data and adapting to new threats and evolving attack 

techniques. Inadequate datasets hinder the system's ability to generalize effectively, limiting its ability to 

detect novel and unknown malware variants. [28] explains that a contributing factor is that security 

researchers cannot access most real-world datasets used for developing malware detection systems. Future 

directions should focus on collaborating with industry partners, threat intelligence providers, and open-

source communities to facilitate access to diverse and representative datasets for malware detection. 

5 Federated Learning Concept 

FL technology uses ML to preserve the model's privacy by enabling multiple devices to collaborate on a 

central project without revealing individual data. Each client has its own training and test datasets. Figure 

5 depicts a basic FL model consisting of an aggregator, or central server, that distributes the global model 

to a group of selected clients. These clients then train their respective models locally using their domain 

dataset in an iterative process. After these steps,  the training outcomes are subsequently sent back to the 

server for aggregation and refinement by the global model 



 

Fig 8 A Federated Learning Model 

 This collaborative approach has become increasingly crucial as ransomware attacks continue to 

pose significant challenges to the cybersecurity community, with cybercriminals continuously advancing 

their techniques, leading to more sophisticated and diverse ransomware attacks. The FL concept has been 

applied to overcome these sophisticated attacks by improving the detection and mitigation of ransomware. 

It offers the benefit of cooperation, sharing, and utilizing relevant threat information. The in  [43] proposed 

FLDetect proposed FLDetect, a unique FL-based method for identifying ransomware on Windows 

machines using API calls with an open-source dataset known as ransomwaredataset2016; they achieved an 

accuracy of 93.1%. By using feature extraction to classify malware, [58] applied a federated malware 

classification approach, which focused more on classifying new malware variants with an impressive area 

under the curve (AUC) of  0.9270 on the dataset provided by VirusTotal. To identify malware IoT-enabled 

devices, [4] introduced the SIM-FED method, which attained an impressive accuracy rate of 99.52%. 

Ultimately, the quest for a permanent solution to ransomware has driven a substantial surge in academic 

literature in this area. However, despite these efforts, a permanent and comprehensive solution that can 

curtail the menace of ransomware remains a dream. 

5.1 FL Aggregation Models 

The effectiveness of an FL model relies on the proficiency of its update aggregation, which leads to a global 

model that securely combines the data from all participants. This essential function is critical for the 

system's performance and operational efficiency. The statutory objective of the FL aggregation mechanism 

remains the improvement of decision-making for a group of participants, denoted as β, by reducing the 

attribute of its loss function β𝑘 of each participating client. These local clients, built with weights W𝑘 and 

trained on private datasets D𝑘  containing 𝑛𝑘 samples, become integral to the aggregation process. 

 The First version of federated learning aggregation, known as FedAvg, was introduced by Google's 

team in 2016 in conjunction with the launch of Federated Learning technology [59]. This framework 



randomly selects several micro-class members for aggregation in a training round. Then, in the aggregation 

process, the parameters of each client's model are weighted and averaged to create a global model, with the 

weighting factor based on the client's data volume. Essentially, the participants are trained using batch 

gradient descent over a single local epoch; when the training phase is complete,  the model transfers their 

gradients to the central server, collates the results, and averages them before finally updating accumulated 

global weights using the gradient descent algorithm. Despite its advantages, FedAvg has its challenges; 

specifically, it requires the client models to train their dataset using just one local epoch and a batch, 

affecting its speed and requiring hundreds of communication rounds before the desired accuracy can be 

attained. 

 In addressing the challenges with FL aggregation, several models that seek to improve the 

functionalities have continued to evolve. In 2018, [60] proposed FedMeta. This model significantly 

addresses the limitations of FedAvg by utilizing a meta-learning approach on a collection of client tasks, 

enabling it to solve new tasks with minimal samples. FedMeta operates through a two-step process in each 

federated learning communication round, which takes place in two phases: the inner update and the outer 

update. During the inner update, class members train their respective models using their domain-owned 

dataset and the global model's weight vectors. Within this process and period, the outer paradigm connects 

with the central server to distribute all parameters to the participants to complete the communication cycle. 

 Subsequently, in 2021, [61] introduced the FedDist. This innovative FL aggregation method 

applies Human Activity Recognition (HAR) to resolve divergence issues experienced in both 

heterogeneous and non-independent and identically distributed (non-IID) datasets. This approach usually 

aggregates the clients using FedAvg before applying pairwise dissimilarity between neurons in class 

members' local and global layers. When the dissimilarity exceeds a specific threshold score, an activation 

neuron feature is added to the main model; otherwise, the request is rejected. Clients then conduct layer-

wise training, freezing updated layers and continuing with subsequent ones. Evaluation of the framework 

showed significant improvement as it outperformed Fedmeta and other state-of-the-art approaches in 

handling non-IID data. Nevertheless, a critical disadvantage of FedDist is its considerable communication 

cost, as including neurons in every FL round raises the workload on both clients and the server. 

 To resolve data and model heterogeneity [62] introduced the FedGA, in which, unlike the 

conventional FL where participants share part of their private data with the main model, the framework of  

FedGat only permits sending the base layer weights to the central server before applying a genetic 

combinatorial algorithm to collate the accumulated weights across all class members. With this principle, 

it minimizes the model's loss function. FedGAt demonstrated faster convergence and enhanced accuracy 

compared to other methods while reducing communication costs. However, critics believe genetic 

algorithms are more complex than methods such as direct weight averaging. 

 The FMTDA approach, proposed by [63], tackles the domain shift problem caused by the uneven 

distribution of local datasets. In this framework, the local devices of participants serve as target domains, 

which are usually made up of datasets that are not labeled. At the same time, a central server manages the 

labeled dataset. The framework aims to improve the accuracy of class members by aggregating their locally 

trained convolutional neural network (CNN) models. This method strategically focuses on balancing local 

adaptation and global model consistency, ensuring improved recognition performance across 

heterogeneous datasets while mitigating the impact of domain shifts. Combining the maximum classifier 

discrepancy (MCD) technique and the Gaussian mixture model (GMM) allows for efficiently handling 

statistical discrepancies among diverse local datasets, facilitating robust and accurate model aggregation. 

To mitigate against Byzantine poisoning attacks [64], Introduced the Split Aggregation: This 

framework was designed to optimize FL aggregation efficiency and accuracy by encrypting and dividing 



user gradients, employing an adaptive weighting strategy for aggregation, and utilizing Randomized 

Singular Value Decomposition (RSVD) to balance computational efficiency and accuracy. The model's 

efficacy is demonstrated through experimental results, which showed the ability of the framework to 

prevent erroneous discarding of honest user gradients, outperforming existing robust and privacy-

preserving FL methods in both computational complexity and communication overhead. However, the 

approach relies on a dual-server architecture, which entails that the servers must not collude; otherwise, 

data privacy and security will be compromised. 

 The overview of the various aggregation methods we have highlighted demonstrates that each 

strategy was initially established to address the numerous issues encountered in the aggregation paradigm. 

These strategies are specifically developed to improve one specific aspect while upholding the overall 

principles of the entire system. 

5.2 Application of Federated Learning to Ransomware Detection and Mitigation 

The rapid growth of digitization and electronic transactions has made sensitive data of individuals and 

organizations perpetually vulnerable to hackers and intruders, particularly with the rise of IoT-based 

applications. Therefore, adopting an FL approach has become crucial to collectively train and manage the 

many aspects of threats arising from general malware and ransomware across our devices, applications, and 

networks. FL  facilitates collaboration among security stakeholders towards a shared objective and 

guarantees data privacy, security, decreased latency, reduced power consumption, and on-device training. 

Additionally, FL enables the delivery of personalized ML models to users, who then learn collectively to 

enhance the user experience. This section highlights the application of FL to general malware and 

ransomware detection, prevention, and mitigation.  

An innovative DeepFed algorithm was proposed by [65] to address the challenges associated with 

heterogeneous and large-scale related cyber-physical systems due to the scarcity of attack data. This 

algorithm FL enhances IDS capabilities by combining a neural network (NN). This architecture facilitates 

the development of a collective IDS by consolidating knowledge from numerous industrial CPS 

environments. A secure communication protocol based on the Paillier cryptosystem was implemented to 

guarantee the security and privacy of the training process. The experimental results demonstrated the 

proposed model's effectiveness and robustness in detecting and mitigating intrusions conducted on a real-

time industrial CPS dataset. 

[11] proposed an FL system for ransomware botnet detection utilizing an autoencoder model. The approach 

involves collecting IoT network traffic at edge devices, which host local models and virtual workers. These 

local class members were trained on the data of the edge device before combining the updates.  The global 

model then transmits the modified parameters back to the edge devices, which train new local models. This 

decentralized technique made it possible to provide data privacy while harnessing collaborative learning. 

The system displayed a high efficacy, obtaining 99% accuracy in categorizing IoT traffic as benign or 

malicious, making it a scalable and safe solution for ransomware detection in IoT networks 

Following the concept, FLDetect was introduced by [43], leveraging FL to detect ransomware on 

Windows machines. This system employs a distributed architecture, where models are trained locally on 

devices, allowing for enhanced privacy and data security while analyzing API calls from Windows systems. 

FLDetect utilized an open-source dataset, ransomwaredataset2016, which contains a collection of 

ransomware-related API call logs. The system involved advanced feature extraction techniques to classify 

malware, focusing on differentiating between benign and malicious activities based on API behavior. With 

this method, FLDetect achieved a commendable accuracy of 93.1% in identifying ransomware attacks, 

demonstrating its potential for real-world applications, although the dataset contained about 600 samples, 



which is not enough. However, this FL-based system offered the dual benefit of high accuracy in detection 

while preserving user privacy, as sensitive data never leaves local devices during training. 

[66] introduced FedA-GRU, a novel detection mechanism utilizing the neural network technique 

to model the FL environment for malicious intrusion. The approach is particularly tailored to enhance the 

security of wireless edge networks and safeguard them against malware attacks. In contrast to traditional 

centralized approaches where data across the devices are broadcast to a global server, FedA-GRU updates 

the global model by sharing just the parameters learned from each edge device, thus ensuring data privacy. 

To further boost the system's efficiency, the researchers devised an attention mechanism that prioritizes 

updates from critical devices while filtering out less significant ones; this concept was a game changer for 

reducing wasteful transmission. Finally, the approach minimized the communication overhead and 

promoted faster convergence of the learning process.  

In the research work [58], the authors employed the Artificial Neural Network (ANN) technology 

for intrusion detection in the IoT-based healthcare paradigm. The approach utilized the distributed nature 

of FL to improve security without centralizing sensitive medical data, thus preserving patient privacy while 

enabling robust malware detection and prevention capabilities. The authors demonstrated significant 

improvements in handling the heterogeneous nature of IoT data, which often varies across devices and 

environments in healthcare settings. Moreover, the system effectively mitigated poisoning attacks, a 

common security threat in controlling malware within large databases, where adversaries attempt to corrupt 

the process by injecting malicious data. By enhancing performance and resilience against such attacks, their 

ANN-based approach ensured a promising solution for securing IoT healthcare networks, where data 

diversity and security are critical concerns.  

The application of FL is extended to agricultural IoT environments by [67], where the authors 

implemented three distinct global models, namely Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), and Deep Neural Network (DNN) for malware intrusion detection and mitigation within 

hierarchical FL (HFL) architectures. Through this research work, the authors analyzed and reported the 

performance of these models across three diverse IoT datasets, addressing the unique challenges presented 

by agricultural IoT systems, such as the heterogeneity of data sources and devices. They leveraged the 

hierarchical FL model to improve scalability and efficiency by organizing devices into layers, thereby 

reducing communication overhead and enhancing model performance. The use of multiple neural network 

architectures ensured a comparative analysis of their effectiveness in identifying malicious activities across 

different datasets. The experimental results proved the versatility and robustness of these models in securing 

IoT networks in agriculture, a sector increasingly reliant on IoT technology for precision farming and 

resource management.  

The authors in [68] pioneered using a privacy-preserving FL framework to identify Android 

malware using API calls and permissions. The proposed system employed secure multi-party computation 

methods and a Support Vector Machine (SVM) to improve malware identification. Importantly, this study 

was acknowledged as the first implementation of an FL-based system for Android malware detection, 

representing an essential advancement in mobile security. 

Following the experience of [68], the research work in  [69] came up with a framework called Less 

is More (LiM),  an improved FL-based malware detection and classification system. An essential factor of 

this paradigm is that it can securely maintain the privacy of other installed programs on a mobile device. 

The researchers applied a semi-supervised ensemble technique to increase the performance of the detection 

and classification tasks. Their empirical findings indicated the framework's efficacy, as the approach 

attained an impressive F1 Score of 95%, and local class members maintained a minimal false positive rate 

of 1% across a dataset of over 50000 malicious and benign samples across 100 federated applications. 



In their study, [58] developed a federated malware classification approach targeting identifying 

new malware variants in Internet of Things (IoT) devices. This method leverages FL, allowing IoT devices 

to train models locally without sharing sensitive data, thereby preserving privacy and enhancing collective 

network detection capabilities. Using the VirusTotal dataset, the approach achieved a robust 0.9270 AUC 

score, indicating high performance in distinguishing malicious and benign software. The emphasis on 

classifying novel malware variants is particularly significant, given the fast-evolving nature of Ransomware 

threats in IoT environments. Application of FL, this method also contributed to addressing the privacy 

issues, scalability, and the need for decentralized data handling, making it a valuable contribution to 

securing IoT ecosystems against malware attacks. 

Similarly, the study by [4] introduced the SIM-FED framework, an FL-based approach that 

achieved an outstanding accuracy of 99.52% in detecting ransomware. This high-performance model 

further illustrated the potential of FL to significantly improve ransomware detection by enabling distributed 

systems to collaboratively learn from diverse datasets without compromising privacy. The continuous 

prevalence and sophistication nature of ransomware remain a motivation for the substantial surge in 

academic literature as efforts continue to intensify to find comprehensive solutions. However, despite the 

impressive progress in FL, DL, and encryption-based defenses, a permanent and all-encompassing solution 

to the ransomware threat remains elusive. The continuous evolution of ransomware tactics and the 

complexity of securing heterogeneous systems such as IoT networks and cloud infrastructures present 

ongoing challenges for researchers and practitioners. As a result, the quest for a long-lasting solution 

remains an active area of exploration. Although the use of FL offers numerous benefits, as we have 

summarized, with more annotation in Table 3, it also presents some challenges; we shall discuss these in a 

subsequent section and provide probable future directions related to malware detection and mitigation 

Table 3 Application of FL to Malware/Ransomware detection and mitigation 

Authors Features Model Domain Dataset  Evaluation  

[11]  Network 

Logs 

Autoencoders IoT N-BaIoT 99% 

accuracy 

[68] Sequence 

API calls 

SVM Andriod OperaStore 95,92% 

F-score 

[43] API call  

System logs 

ML Windows ransomwaredataset2016 93.01% 

accuracy 

[67] System 

calls 

ANN IoT_Health Ember 96.00% 

accuracy 

[70] Permissions  

Broadcast 

receivers 

LiM Andriod Androzoo 95%  

F-score 

[4] traffic logs CNN IoT IoT-23 dataset 99.52% 

accuracy 

[71] Static API 

sequences  

CNN Andriod Androzoo 97.89% and 

94.39% 

accuracy 



[12] Behavioral 

features 

DW-FedAvg Andriod Kronodroid, Drebin,  

Melgenome 

  

 

99.18% 

F-score 

5.3 Common Challenge Facing FL application to Malware Detection, prevention, 

and Mitigation  

Data and transaction security continues to be a crucial issue in FL applications. While existing centralized 

ML frameworks have created significant concerns regarding the secure transfer and storage of user data, 

FL offers a decentralized solution by storing user data on local devices, decreasing the danger of disclosing 

sensitive information. However, this strategy creates new issues, particularly in safeguarding the model 

updates, such as weights and gradients, which are shared between devices and central servers. These shared 

parameters, although not direct data, can nonetheless be vulnerable to attacks through inference, data 

leakage, data poisoning, and model inversion. Cybercriminals can reconstruct sensitive information from 

the model updates from these loopholes. 

5.3.1 Membership Inference Attack(MIA) 

 According to [72][73], inference attacks involve an adversary attempting to determine if a particular 

sample data or class member participated in the training. This attack exploits the information embedded in 

the model's parameters, such as gradients or weights, shared between the local members and the global 

server in an FL environment. Given the above analysis, an adversary actor may analyze the model's output 

or the sensitivity of gradients to compromise the training. Mathematically, given a model 𝑓𝜃(𝑥), the 

adversary tries to assess if the information on point 𝑥′, which represents the training set by observing the 

output at 𝑓𝜃(𝑥
′) and comparing it against predefined thresholds. These attacks pose a significant privacy 

threat, particularly when the model is overfitted or highly confident in its predictions. 

5.3.2 Communication Overhead 

Communication overhead in a federated environment is particularly critical in large-scale applications such 

as malware detection, prevention, and mitigation. In a typical FL setting, each device (or participant) 

computes local model updates and sends these updates (e.g., gradients or model weights) to a global 

aggregation model. This to-and-fro movement between the clients and the central server can create 

significant overhead, particularly when operating in a distributed network of devices like IoT systems, 

where bandwidth is often limited. The size of the model being trained significantly influences 

communication costs. Large models with millions of parameters result in substantial data transmission per 

round of training, slowing down the system and increasing bandwidth consumption. This issue is 

particularly prevalent in malware detection tasks, where DL models, such as CNNs or transformers, are 

regularly used due to their high performance, thereby increasing rounds of communication afront between 

clients and the server to achieve convergence if each round requires transmitting extensive model updates, 

the total communication cost becomes a major concern. 

5.3.3 Data Leakage  

Data leakage occurs when an attacker intercepts communicable parameters, like shared weights or 

combinatorial gradients, to infer and reconstruct the original training data. Authors in [74][10] have 

demonstrated that FL is vulnerable to gradient leakage attacks, where adversaries exploit the information 

embedded in gradients to reverse-engineer sensitive data. These can be expressed mathematically using  

𝑓𝜃(𝑥) to represent the global model with parameters 𝜃  



While  ∇𝜃𝐿(𝑥) denotes the loss function gradient in relation to the input 𝑥 of the participant. The adversary 

can observe and interfere in the shared gradients ∇𝜃𝐿𝑥 using some optimization techniques to iteratively 

minimize the difference between the actual gradients and those computed from the reconstructed data 

𝑥. This process is formalized as: 

𝑥 = arg 𝑚𝑖𝑛
𝑥′
 ∥∥∇𝜃𝐿(𝑥

′) − ∇𝜃𝐿(𝑥)∥∥ 

where 𝑥 represents the reconstructed data that closely approximates the original input 𝑥. As highlighted in 

research work [75], this attack severely compromises participant privacy in FL environments, significantly 

when models are updated frequently and the gradients contain rich information about the underlying data.  

5.3.4 Data Labeling and Quality 

In general malware analysis and classification, completely labeled data is considered quality and crucial for 

modeling effective detection models. Using the FL environment as a focus, devices often contain varying 

proportions of labeled and unlabeled data, which can negatively impact model performance. In recent times, 

for cybersecurity researchers, analyzing and labeling malware data has been particularly challenging due 

to the constantly evolving nature of malware and the complexity of distinguishing between benign and 

malicious behaviors. Recent studies have explored Semi-Supervised Learning (SSL) and Self-Supervised 

Learning (Self-SL) approaches to mitigate this problem. For instance, authors in  [76]demonstrated how 

combining SSL techniques with FL improves malware detection accuracy by harmonizing a well-labeled 

dataset. 

5.3.5 Data poisoning 

 Data poisoning occurs when a participating model injects falsified or corrupted data into the local training 

process, intentionally or inadvertently, to manipulate the global model's performance and inadvertently pose 

a danger in dealing with ransomware detection. This concept is explained meticulously in the study by 

([19],[75]). In FL, where local member updates are collated to form a central update, an adversary can 

corrupt the local dataset 𝑥𝑖 or alter the gradient updates ∇𝜃𝐿(𝑥𝑖), leading to skewed global parameters. This 

behavior can degrade the model's accuracy, introduce biases, or even insert backdoor vulnerabilities., by 

corrupting the local gradient ∇𝜃𝐿(𝑥𝑖) that contributes to the global update( 𝜃𝑡+1 = 𝜃𝑡 − 𝜂∑  𝑛
𝑖=1 𝑤𝑖∇𝜃𝐿(𝑥𝑖). 

Techniques such as Byzantine fault tolerance, robust aggregation methods (e.g., Krum or Trimmed Mean), 

and outlier detection are essential in mitigating these attacks, ensuring the global model remains robust 

against poisoned data contributions. 

5.3.6 Model inversion attacks:  

In this scenario, an adversary exploits the shared model updates, such as gradients or weights submitted by 

participating clients to the central aggregator, to reverse-engineer sensitive information about the original 

training data[71] points out that, Unlike traditional data breaches, model inversion targets the inherent 

relationships captured in the learned parameters, allowing the adversary to approximate or reconstruct 

features of the original data. Mathematically, let 𝑓𝜃(𝑥) represent the global model with parameters 𝜃, and 

let ∇𝜃𝐿(𝑥) denote the loss function gradient as it relates to a class member at point x. In a model inversion 

attack, the adversary, having access to the aggregated gradients ∇𝜃𝐿(𝑥), can apply optimization techniques 

to reconstruct 𝑥 iteratively; this concept is represented by the entire equation 

𝑥 = arg 𝑚𝑖𝑛
𝑥′
 ∥∥∇𝜃𝐿(𝑥

′) − ∇𝜃𝐿(𝑥)∥∥ 

where 𝑥 represents the reconstructed approximation of the original input 𝑥. This attack is particularly 

concerning in privacy-sensitive environments, as it allows the extraction of private data without direct 



access to the member's information. Mitigation techniques like the secure multi-party computation, 

discussed in the sections below, are often used to obfuscate gradient information and reduce the risk of 

model inversion, ensuring the security and privacy of participants' data in FL systems. 

 

 

5.4 Solutions for Future Perspectives 

5.4.1 Secure Multi-Party Computation (SMPC) 

 SMPC is an innovative method that enables multiple entities to collaboratively compute a function over 

their private inputs without revealing those inputs to one another. This concept is mainly carried out by 

partitioning individual tasks into independent entities before they are executed and before securely 

aggregating the results. In malware detection, prevention, and mitigation, Future directions must consider 

adopting and improving SMPC as it plays an important role in safe-keeping relevant information of the 

model while facilitating collaborative training. It allows class members to carry out training on their domain 

data. In addition, leveraging SMPC techniques like secret sharing, where class member updates, including 

gradients, are transformed into distributed secrets among all members, offers even more comfort and trust. 

5.4.2 Homomorphic Encryption (HE) 

Homomorphic encryption refers to an encryption apparatus uniquely built to leverage diverse computations 

on encrypted data without decryption, thus preserving data privacy throughout the process. Malware 

detection, prevention, and mitigation ensure that sensitive data such as logs, static or dynamic behavioral 

parameters, network traffic, or system metrics remain encrypted while allowing collaborative model 

training across distributed devices. This approach becomes especially valuable when privacy and data 

security are paramount, such as when dealing with proprietary malware signatures or sensitive user behavior 

data. HE enables mathematical permutations to be encrypted so that the information will be reviewed 

without explicitly decrypting the data, ensuring that sensitive data is never exposed during the computation. 

This concept guarantees robust privacy and prevents adversaries from inferring private information from 

the model updates, even if they gain access to intermediary results. 

Two common variations of  HE exist; they are Fully Homomorphic Encryption (FHE), which 

mainly indicates arbitrary permutations with encrypted data as discussed by the research work  [77], and 

we also have Semi-Homomorphic Encryption (SHE), which enables specific operations, like addition and 

multiplication, on ciphertexts [78]. Future research needs to build upon the contemporary approaches by 

[79],[80],[81] to enhance the multi-party computational capability since there are still challenges associated 

with the current, such as the computational and communication overheads associated with cryptographic 

operations. 

5.4.3 Differential Privacy (DP)  

Differential Privacy is a powerful technique for preserving individual information while analyzing or 

sharing data, especially on a large scale. The principle of DP involves adding randomized noise global 

parameters to mask sensitive information while maintaining the statistical integrity of the aggregated data. 

Techniques like the Laplace mechanism [82] and the Gaussian mechanism [83] are commonly used to 

achieve this. Consider an FL system involving 𝑛 class members, with each contributing its quota to the 

updates on local environment  Δ𝑤𝑖 computed on their domain data 𝐷𝑖.  To incorporate DP, each participant 𝑖 

generates a noisy model update Δ𝑤𝑖
𝐷𝑃  using the formula: 



Δ𝑤𝑖
𝐷𝑃 = Δ𝑤𝑖 + Lap (

Δ𝑓

𝜖
) 

Where Lap (
Δ𝑓

𝜖
) represents the Laplace noise,   Δ𝑓 is the loss function’s sensitivity, and 𝜖 is the privacy 

inclination budget, representing a positive integer that controls noise addition. The parameter sensitivity 

Δ𝑓 reflects how much a single data point can affect the model's output, and its precise determination is 

crucial to balance privacy and utility. Once all participants compute these DP-protected model updates, 

they are sent to the central combinatory for updates: 

𝑊new = 𝑊old +
1

𝑛
∑  𝑛
𝑖=1 Δ𝑤𝑖

𝐷𝑃 

𝑊new  denotes the update while 𝑊old  refers to the pre-update state. By incorporating noise at the participant 

level, Local Differential Privacy (LDP) ensures that sensitive details from individual datasets are obscured, 

even from the central server, making it especially useful in untrusted environments. In general contrast, DP 

applies noise at the server level after aggregation, which assumes a trusted aggregator. 

5.4.4 Model Regularization and Pruning 

Reducing model overfitting through techniques like dropout, weight regularization, or model pruning is a 

way forward for enthusiasts in this field, as it can help mitigate the risk of Membership Inference Attacks 

(MIA). By preventing the model from learning exact data patterns specific to individual participants, it 

becomes harder for adversaries to make inferences about specific data samples. Moreover, MIAs are often 

exacerbated when models overfit individual participants’ data, making it easier for adversaries to infer 

participation. Future research should prioritize advanced regularization techniques (e.g., dropout, weight 

decay) to reduce model overfitting. This adaption will help reduce the model's sensitivity to specific data 

points, limiting the effectiveness of MIAs. 

5.4.5 Adversarial Training 

 Integrating adversarial training techniques where the model is trained against simulated inference attacks 

could improve its robustness. By adversarially augmenting the training process, the model can learn to resist 

attempts at inference. Future work should explore adaptive adversarial defenses tailored specifically for FL 

systems focused on malware detection and prevention. 

5.4.6 Benchmarking and Standardization 

The field would benefit from standardized benchmarks and datasets designed to test the effectiveness of 

privacy-preserving techniques against MIAs in cybersecurity-focused FL applications. The MITRE 

ATT@CK framework is an excellent example of a standardized framework that can be used for enhanced 

ransomware detection, primarily through collaborative initiatives. Future works should also consider 

establishing standardized evaluation metrics to help researchers compare approaches and optimize defenses 

against MIAs more effectively. 

5.4.7 Byzantine fault tolerance (BFT) 

This approach ensures that the system can withstand adversarial updates by limiting the influence of 

malicious participants. In addition, aggregation methods like Krum and Trimmed Mean are designed to 

filter out extreme or deviant updates that deviate significantly from the majority, reducing the likelihood 

that poisoned data will skew the global model. Krum selects the local update closest to most other updates, 

while Trimmed Mean discards a fixed number of outlier updates before averaging. These methods help 



maintain the model's integrity by ensuring that outliers, whether malicious or erroneous, do not 

disproportionately affect the final global update. 

5.4.8 Combining Privacy-Preserving Techniques 

Rather than relying on a single privacy-preserving technique, future research should explore combining 

methods like SMPC, DP, and HE to create a layered privacy approach. Each technique provides different 

levels of protection, and a combination can address different types of attacks while balancing efficiency 

and privacy. For instance, DP can protect against MIAs, while HE can secure data during aggregation, and 

SMPC can prevent direct access to sensitive updates.  

5.4.9 Adapting Cryptographic Protocols for Real-Time Applications 

 One of the significant challenges in cybersecurity applications like malware detection is the need for real-

time response. Cryptographic protocols such as SMPC and HE tend to introduce delays, which can impede 

the system's ability to respond quickly to threats. Future research should prioritize the optimization of 

cryptographic protocols for speed and scalability, ensuring that FL systems can operate effectively in real-

time scenarios. Techniques such as batch processing of encrypted data or parallel processing of 

homomorphic operations could help improve the efficiency of these cryptographic protocols in time-

sensitive applications. 

5.4.10 Outlier Detection  

The Outlier concept is crucial in identifying and excluding poisoned contributions. By flagging anomalous 

updates based on statistical deviations or unexpected patterns in gradient behavior, the system can reject 

potentially harmful inputs before aggregating them into the global model. As we advance, research must 

focus on improving the scalability and efficiency of these defense mechanisms, particularly in terms of 

malware detection in large-scale, distributed IoT networks. Combining these techniques with other security-

related concepts like  SMPC or DP  may offer a more comprehensive solution, ensuring the model is secure 

from poisoning attacks and protects participants' sensitive data. 

6 Method of SLR 

This review followed the established guidelines for SLR, namely Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA), also inspired by the review techniques presented in[84][85], which 

comprised: 

• Formulating clear questions: we defined several research questions to guide our search. 

• Systematic searching: applied a methodical approach to finding relevant studies across various 

sources. 

• Extracting critical information: Once we found the studies, we carefully extracted essential data 

from them. 

• Following our SLR design in Figure 9, we synthesized, analyzed, and extracted data using seven(7) 

steps: Step 1 involves formulating some research questions that connect with our topic, steps 2 and 

3 are concurrent, and they incorporate all the searching strategies and refining processes using 

keywords, search string, search process, and source selection, in step 4 we started the selections 

criteria, and that continued with the data extraction in step 5 and snowballing in step 6, then the 

final step is the qualitative assessment in which we summarized the overall findings of the reviewed 

studies. 



 

4.1 Formulating Research Questions(RQ) 

To present a comprehensive review of the current state of research in our focus area, we formulated some 

critical research questions; details are in Table 4. These questions form a guide to the literature of 

information we seek. 

Table 4 Information on RQs 

No Research Question Objective and Justification 

RQ1 How has FL been applied to 

ransomware detection? 

This Research question allowed us to navigate the various 

approaches that have utilized FL to improve or enhance 

ransomware detection and mitigation. 

 

RQ2 What are the common challenges 

facing FL applications in 

Ransomware Detection and 

Mitigation? 

 

To properly guide future enthusiasts who may wish to apply 

federated concepts into the domain of ransomware detection, this 

research question ensured that the most common likely challenges 

they should be worried about are discussed.  

RQ3 

 

What is the current ransomware 

threat landscape? 

With this research question, we try to analyze and highlight the 

current trend in ransomware’s business, including its distribution 

and propagation.  

 

RQ4 What are the existing ransomware 

detection techniques, and what 

RQ4 seeks to investigate the recent performance of various 

approaches applied in ransomware detection and mitigation; it 

Fig 9 SLR Design showin the various stages of the research process 



are the challenges of deploying 

them across industries? 

will also highlight why these approaches are barely deployed in 

the industry setting.  

 

 

4.2 Search Strategy 

The structured search approach comprises four key stages: keywords, Search string, Selecting source, and 

Processing. Table 5 shows our search keywords, initiated with a broad, meticulous, and extensive 

exploration of literature across online databases such as Taylor & Francis, Scopus, ScienceDirect, et cetera. 

Additionally, our search extended to Google Scholar to incorporate literature not covered by the databases, 

given its popularity as a supplementary database. We coined the search keywords from the research 

question we formulated earlier to retrieve accurate results relevant to our target topics.  

Table 5 Keyword Strings 

From RQ Search keyword Coined 

RQ1  “Application,” “Federated,” AND “Learning” AND “Ransomware,” OR “Malware” OR 

“FL” OR “Collaborative,” OR “Distributive” OR “Decentralized,” AND “Detection” 

 

RQ2 “Challenges” OR “Facing” AND “Federated,” AND “Learning” AND “Application” 

“Ransomware” AND “Detection” OR “Malware,” “Techniques” OR “Method” OR 

“Approach” OR “Framework”  

 

RQ3 “Ransomware” AND “Trend” OR “Threat” AND “Landscape” OR “Current” OR “Latest” 

   

RQ3 “Ransomware” OR “Malware” AND “Detection” OR “Classification” OR “Mitigation” 

OR “Prevention” OR “Approaches” OR “Methods” 

 

4.3 Refining Search(RS) 

Refining search involves optimizing our search strings and keywords, annotated in stages 2 and 3 of our 

SLR protocol design, and more information in Table 4. For example, our protocol recognizes that using 

keywords alone is insufficient for effective searching and recommends combining them into a search string. 

However, some databases do not support this feature, so we remove the quotation marks and rephrase the 

keyword when searching in such databases. 

Table 6 Results of Refining Search(RS) 

S/N  Database Articles before RS Articles after RS 

1  Scopus 2345 758 

 

2  IEEE explore 1602 341 



 

 

4.4 Selection  

This stage involves the application of specific criteria in including or excluding an article, as shown in 

Table 7, which are carried out to ensure that we achieve our review objective. The purpose of these selection 

criteria is to ensure that they remain up-to-date with the most recent advancements in the area. 

Table 7 Inclusion-Exclusion Criteria 

Inclusion Exclusion 

Research articles published in the English language  

 

Book chapters, magazines, et cetera that are not a 

primary study or main research work were 

excluded. 

 

Primary studies have been included. 

 

Articles published in other languages aside from 

English were excluded. 

 

Research papers from 2019 to 2024 have been 

included  

 

Research publications before 2019 were excluded. 

 

Open-access papers were included. Publications not in full open access were excluded. 

 

Only journal and conference studies are included  Survey and review articles are excluded  

 

 The threshold scoring system of this systematic literature review is adopted to ensure the 

completeness and relevance of the studies to be included. A study is eligible if it accumulates a minimum 

score of 3; it should cover specific aspects in each of the three research domains below: 

• Algorithm Analysis: Discusses the ML algorithm (e.g., SVM, Random Forest) for ransomware 

classification, highlighting the DL algorithm (e.g., CNN, RNN) for ransomware classification. 

Analysis of trends in algorithm usage (e.g., comparison over time, emerging techniques). 

• It describes the concept of FL and its application to malware detection and classification, identifies 

factors influencing the choice of FL  frameworks, and discusses challenges facing FL application 

ransomware detection, mitigation, and tradeoffs.  

 

3  Wiley online library 

 

340 169 

4  Springer 

 

237 97 

5  Science Direct 

 

118 78 



• The paper should refer to insight and challenges facing the FL application, as well as problems 

halting the deployment of the ransomware system to industries. Compares different techniques' 

performance for the detection of ransomware using multiple measures. 

 

Inclusion Criteria Formula: 

Inclusion 

=

{
 
 

 
 ∑ 

𝑛

𝑖=1

𝐴RQ𝑥  is TRUE,      if ∑ 

𝑛

𝑖=1

𝐴RQ1 +∑ 

𝑛

𝑖=1

𝐴RQ2 +∑ 

𝑛

𝑖=1

𝐴RQ3 ⩾ 3        (Accept) 

      

𝑆𝑎𝑡𝑖𝑠𝑓𝑦  𝑖𝑓  

 

Otherwise,  𝑡ℎ𝑒𝑛  (Reject ) 

 

Where: 

∑  𝑛
𝑖=1 𝐴RQ𝑥 represents the sum of scores based on the aspects within each respective research question 

(RQ1, RQ2, RQ3, RQ4). 

Apparently, a paper is considered for selection if it satisfactorily answers at least one aspect from among 

the three categories listed. This rigorous selection process assures that the studies meet a multidimensional 

perspective of ransomware detection: algorithmic approaches, ransomware trend landscape, FL 

frameworks, and performance evaluation methodologies. 



 

Fig 10 Systematic review outcome indicating  the data records we have otantained using the 

research and review methodology before undergoing analysis  

 Figure 10 shows our systematic review outcome; after implementing our inclusion and exclusion 

criteria, 185 articles were eligible. Redundant papers were removed, and each article was evaluated against 

the defined keywords and formulated research questions. Papers were initially considered based on their 

titles and abstracts. 

4.5 Data Extraction  

Following the selection process, the review proceeded to the data extraction stage, where the attributes and 

findings of the selected articles were systematically documented and presented. In this stage, we examined 

the detection approach applied in the paper, the aim and objective, and the technologies used. After 

reviewing and making an appropriate selection, the relevant papers were exported as a Comma-Separated 

Values (CSV) file and uploaded to Rayyan1 online for the quantitative analysis as the final stage; Rayyan 

and VOSviewer2 software were selected for these tasks. Rayyan is an online platform that offers a 

collaborative screening environment for literature review, while VOSviewer is appropriate for visualization 

of the screened result. Figure 11Fig 11 displays the association of relevant keywords from the studies we 

have selected; the areas with yellow and green indicate the current actively researched areas, while the 

                                                           
1 https://new.rayyan.ai/reviews/1007035/screening 
2https://www.vosviewer.com/  



purple shows areas yet to be exploited enough. The visualizations make finding a research gap in 

ransomware detection and mitigation easy. 

 

Fig 11 Visualization of keyword by association using VOSviewer3 

 

 

4.5 Snowballing 

This mechanism is critical for including papers, as it involves extracting the most pertinent literature within 

the research domain [86]. Initially, we applied this concept to the 185 selected papers during the data 

extraction stage. After thoroughly reviewing the abstracts and methodologies, 85 papers were retained. 

Subsequently, a careful examination of the result analysis and full text narrowed the list to 53 papers used 

for this study. 

4.6 Results and Discussion on Quantitative Analysis 

Quantitative analysis is the heart of our (SLR), as it statistically evaluates and discusses the data from 

research studies. This study's objective will be realized by analyzing the data from various perspectives and 

parameters, achieving a comprehensive understanding of the nature and trends within our target area, as 

outlined in our introduction. Our findings highlight that ransomware detection remains a highly active and 

evolving research area; however, the FL application is still very new and under-explored.  

                                                           
3 https://www.vosviewer.com/ 



 

Fig 12 Publication in the research domain in 5 years (2019 – 2024), which indicates active research 

in the detection, response, analysis, and mitigation 

 

 As illustrated in Figure 12, the number of studies published from 2019 to 2024 has shown a 

consistent upward trend, reflecting the growing importance of this field in the cybersecurity landscape. 

Notably, approximately 45% of the surveyed studies advocate for collaborative threat information-sharing 

approaches, such as FL, as a critical strategy for enhancing cyberspace security. However, this collaborative 

approach is underutilized in ransomware detection and mitigation strategies despite its potential. Integrating 

FL in ransomware detection could significantly enhance the collective defense mechanisms, allowing for 

faster adaptation to emerging threats by leveraging data from multiple sources. Therefore, we believe that 

applying more research efforts, especially in a synergic manner, is needed to harness the full potential of 

collaborative approaches in combating the dynamic and rapidly evolving nature of ransomware attacks. 

This gap presents an opportunity for future work to explore the integration of FL and other collaborative 

methods to build more resilient ransomware detection and response frameworks. 

 



 

Fig 13 Study published by country, with the US, India, UK, and China ranking as top destinations 

 Figure 13 presents the distribution of publications related to malware detection, classification, and 

prevention across different countries. The data reveal some intriguing insights: despite being among the top 

five most targeted countries for malware attacks in 2023, highlighted in Figure 5 of section 3, specifically 

the United States, Canada, United Kingdom,  Germany, and France, only the United States and the United 

Kingdom demonstrate significant engagement in malware research among these nations. This disparity 

highlights a gap between being a primary target of cyber threats and actively contributing to the body of 

research to combat such threats. Interestingly, China is not listed among the top ten most targeted countries 

for malware attacks; however, they firmly commit to research in this field. This proactive stance likely 

reflects strategic priorities in cybersecurity, emphasizing preemptive measures and technological leadership 

rather than merely reacting to direct threats. The active involvement of the Chinese research community 

suggests a focused effort on developing innovative solutions and advancing the scientific understanding of 

malware behaviors, detection techniques, and preventive measures. Practically, the uneven global 

distribution of research efforts indicates that countries most affected by malware do not always contribute 

to research output proportionally. International collaboration and investment in research, particularly from 

highly targeted regions, should be encouraged to strengthen global cybersecurity resilience. 

 

 



 

Fig 14 Distribution of subject areas for malware detection, response, and prediction 

 Figure 14 shows the critical knowledge domains essential for malware detection and mitigation 

expertise. This chart provides valuable insights into the field's interdisciplinary nature, showcasing the 

primary and complementary areas of expertise that contribute to advancements in this domain. The core 

subject areas include computer science, engineering, and mathematics, which form the foundational pillars, 

equipping researchers with the necessary technical skills, such as algorithm development, data analysis, 

and system design, essential for developing sophisticated detection and mitigation techniques. Computer 

science, in particular, plays a pivotal role, offering programming, ML, cybersecurity, and software 

engineering knowledge, which are integral to understanding and combating malware threats. Engineering 

complements this by focusing on designing, implementing, and optimizing hardware and software systems 

that are resilient to malicious attacks. Mathematics contributes through its analytical frameworks and 

statistical methods, enabling the modeling and prediction of malware behaviors, which are critical for 

practical detection algorithms. 

 In addition to these core fields, complementary domains like decision science, social science, 

energy, and business management provide broader perspectives that enhance malware research. Decision 

Science contributes to optimizing response strategies and improving decision-making processes in 

cybersecurity contexts. Social Science offers insights into the human factors associated with cyber threats, 

including user behavior and threat actor motivations. The relevance of Energy and Business Management 

emerges from the increasing targeting of critical infrastructure and enterprise environments, highlighting 

the need for specialized knowledge to protect these sectors. These interdisciplinary knowledge areas 

underscore the complexity of malware detection and mitigation, highlighting the need for a broad and 

diverse set of skills and expertise that fosters innovative solutions and a more holistic approach to 

addressing the challenges posed by ever-evolving cyber threats.  

 

 

 

 

 



 

Fig 15 Cross-platform distribution on the application of FL in malware detection and mitigation, 
indicating a high percentage in IoT devices, Windows and Andriod platform 

 Figure 15 illustrates the cross-platform distribution of FL applications in malware detection and 

mitigation, highlighting significant adoption across IoT devices, Windows, and Android platforms. The 

high percentage of applications in IoT devices is particularly noteworthy, as the proliferation of IoT-enabled 

appliances, often powered by artificial intelligence and automation, has significantly expanded the attack 

surface for cybercriminals. The surge in FL research within this domain is consistent with the rapid growth 

of IoT devices, which are increasingly targeted due to their often-limited security measures and widespread 

use across households, offices, and firms. The Windows platform also exhibits similar usage of FL, 

particularly within the financial sector, which has recently been a major target for cybercriminals. The 

adaptability of FL to continuously improve detection models by learning from diverse, real-world threat 

data without exposing sensitive information makes it an attractive solution for this sector, where security 

and compliance requirements are paramount. 

 The Android platform ranks among the top three due to its global prevalence and widespread use 

among mobile users. The platform’s popularity makes it a frequent target for malware, and the application 

of FL helps enhance detection mechanisms by training on decentralized datasets gathered from numerous 

Android devices worldwide. The application of FL across these platforms demonstrates its potential as a 

pivotal tool for future research in malware detection and mitigation. FL’s ability to harness distributed data 

while safeguarding privacy positions it as a critical enabler in the ongoing battle against cyber threats. As 

technology evolves, further exploration and implementation of FL will be essential in developing robust, 

adaptive defenses capable of countering increasingly sophisticated malware attacks. 

 

 

 

IoT

Windows

iOS
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Others



7 Limitations and Conclusions 

7.1 Limitations 

This study employed a rigorous, comprehensive and straight-to-the-point methodology, leveraging 

prominent online databases renowned for hosting high-quality, peer-reviewed research publications. While 

this approach enhances the credibility and reliability of our findings, it also presents inherent limitations. 

Firstly, our inclusion criteria were restricted to studies published in English, which inherently excludes 

relevant research available in other languages. This language bias may limit the comprehensiveness of our 

review, particularly in regions where significant research on Ransomware and FL applications for malware 

and ransomware detection might be published in non-English journals. Similarly, our review's scope was 

confined to publications from 2019 - 2024, potentially omitting earlier foundational works that could 

provide valuable historical context or insights into the evolution of FL in ransomware detection and broader 

cybersecurity trends. This temporal constraint may have led to excluding relevant studies that predate the 

chosen timeframe but still hold significance in the field. 

 Our study incorporated an analysis of FL applications for ransomware detection, common 

challenges faced in these applications, and an exploration of the techniques and trends within this landscape. 

While these inclusions substantiate our analysis and align with our research objectives, it is essential to 

acknowledge that the observations presented may reflect conservative estimates. Given the rapidly evolving 

nature of malware and ransomware threats, additional techniques and emerging trends may exist beyond 

those identified within the constraints of this SLR. 

 Furthermore, the keyword-driven search strategy employed, although carefully designed, might 

have inadvertently missed some relevant studies, particularly those that may not explicitly mention our 

targeted keywords but still contribute valuable insights to the fields of malware detection, prevention, and 

FL applications. This dynamic and interdisciplinary domain means that relevant research could be 

published under varied terminologies or within adjacent fields not immediately captured by our search 

terms. 

 

7.2 Conclusion 

Our SLR comprehensively examined the landscape and evolving ransomware detection and mitigation 

trends, explicitly focusing on the FL application and other advanced techniques. By meticulously reviewing 

studies published between 2019 and 2024, we synthesized critical insights into various algorithms for 

ransomware detection, the application of FL in malware detection, and related challenges encountered in 

the field. Our analysis highlighted key findings and emerging trends, providing a deeper understanding of 

the current state of ransomware detection technologies. 

 The review identified that FL is pivotal in advancing ransomware detection. This technique offers 

innovative approaches that enhance detection accuracy and enable real-time, distributed threat analysis 

without compromising data privacy. Since its introduction by Google in 2016, FL stands out as a 

transformative approach, enabling collaborative learning across decentralized networks while protecting 

sensitive data. This feature is crucial given the increasing sophistication of ransomware attacks targeting 

diverse platforms like IoT-enabled, Windows, and Android devices. 

 We suggest leveraging FL and graph-based dynamic analysis to bolster ransomware detection 

capabilities significantly. Graph Neural Networks (GNNs) and related graph analysis methods have shown 

excellent efficiency in capturing complex relationships within malware behaviors, making them highly 



effective in identifying and mitigating ransomware threats. As ransomware continues to pose a significant 

threat to organizations and individuals worldwide, the insights and recommendations provided herein can 

serve as a foundation for future research and development of next-generation ransomware defense 

mechanisms.  
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